Byker
2020-09-19 02:57:34 UTC
https://www.commondreams.org/views/2020/09/12/climate-emergency-overdrive-our-age-compound-disasters-10-oregon-evacuated
i'm trying to tell you too ,and then one day the sun will blow up
----------------------------------------------------------
An earthquake will destroy a sizable portion of the coastal Northwest.
The question is when.
BY KATHRYN SCHULZ
When the 2011 earthquake and tsunami struck Tohoku, Japan, Chris Goldfinger
was two hundred miles away, in the city of Kashiwa, at an international
meeting on seismology. As the shaking started, everyone in the room began to
laugh. Earthquakes are common in Japan—that one was the third of the
week—and the participants were, after all, at a seismology conference. Then
everyone in the room checked the time.
Seismologists know that how long an earthquake lasts is a decent proxy for
its magnitude. The 1989 earthquake in Loma Prieta, California, which killed
sixty-three people and caused six billion dollars’ worth of damage, lasted
about fifteen seconds and had a magnitude of 6.9. A thirty-second earthquake
generally has a magnitude in the mid-sevens. A minute-long quake is in the
high sevens, a two-minute quake has entered the eights, and a three-minute
quake is in the high eights. By four minutes, an earthquake has hit
magnitude 9.0.
When Goldfinger looked at his watch, it was quarter to three. The conference
was wrapping up for the day. He was thinking about sushi. The speaker at the
lectern was wondering if he should carry on with his talk. The earthquake
was not particularly strong. Then it ticked past the sixty-second mark,
making it longer than the others that week. The shaking intensified. The
seats in the conference room were small plastic desks with wheels.
Goldfinger, who is tall and solidly built, thought, No way am I crouching
under one of those for cover. At a minute and a half, everyone in the room
got up and went outside.
It was March. There was a chill in the air, and snow flurries, but no snow
on the ground. Nor, from the feel of it, was there ground on the ground. The
earth snapped and popped and rippled. It was, Goldfinger thought, like
driving through rocky terrain in a vehicle with no shocks, if both the
vehicle and the terrain were also on a raft in high seas. The quake passed
the two-minute mark. The trees, still hung with the previous autumn’s dead
leaves, were making a strange rattling sound. The flagpole atop the building
he and his colleagues had just vacated was whipping through an arc of forty
degrees. The building itself was base-isolated, a seismic-safety technology
in which the body of a structure rests on movable bearings rather than
directly on its foundation. Goldfinger lurched over to take a look. The base
was lurching, too, back and forth a foot at a time, digging a trench in the
yard. He thought better of it, and lurched away. His watch swept past the
three-minute mark and kept going.
Oh, shit, Goldfinger thought, although not in dread, at first: in amazement.
For decades, seismologists had believed that Japan could not experience an
earthquake stronger than magnitude 8.4. In 2005, however, at a conference in
Hokudan, a Japanese geologist named Yasutaka Ikeda had argued that the
nation should expect a magnitude 9.0 in the near future—with catastrophic
consequences, because Japan’s famous earthquake-and-tsunami preparedness,
including the height of its sea walls, was based on incorrect science. The
presentation was met with polite applause and thereafter largely ignored.
Now, Goldfinger realized as the shaking hit the four-minute mark, the planet
was proving the Japanese Cassandra right.
For a moment, that was pretty cool: a real-time revolution in earthquake
science. Almost immediately, though, it became extremely uncool, because
Goldfinger and every other seismologist standing outside in Kashiwa knew
what was coming. One of them pulled out a cell phone and started streaming
videos from the Japanese broadcasting station NHK, shot by helicopters that
had flown out to sea soon after the shaking started. Thirty minutes after
Goldfinger first stepped outside, he watched the tsunami roll in, in real
time, on a two-inch screen.
In the end, the magnitude-9.0 Tohoku earthquake and subsequent tsunami
killed more than eighteen thousand people, devastated northeast Japan,
triggered the meltdown at the Fukushima power plant, and cost an estimated
two hundred and twenty billion dollars. The shaking earlier in the week
turned out to be the foreshocks of the largest earthquake in the nation’s
recorded history. But for Chris Goldfinger, a paleoseismologist at Oregon
State University and one of the world’s leading experts on a little-known
fault line, the main quake was itself a kind of foreshock: a preview of
another earthquake still to come.
Most people in the United States know just one fault line by name: the San
Andreas, which runs nearly the length of California and is perpetually
rumored to be on the verge of unleashing “the big one.” That rumor is
misleading, no matter what the San Andreas ever does. Every fault line has
an upper limit to its potency, determined by its length and width, and by
how far it can slip. For the San Andreas, one of the most extensively
studied and best understood fault lines in the world, that upper limit is
roughly an 8.2—a powerful earthquake, but, because the Richter scale is
logarithmic, only six per cent as strong as the 2011 event in Japan.
Just north of the San Andreas, however, lies another fault line. Known as
the Cascadia subduction zone, it runs for seven hundred miles off the coast
of the Pacific Northwest, beginning near Cape Mendocino, California,
continuing along Oregon and Washington, and terminating around Vancouver
Island, Canada. The “Cascadia” part of its name comes from the Cascade
Range, a chain of volcanic mountains that follow the same course a hundred
or so miles inland. The “subduction zone” part refers to a region of the
planet where one tectonic plate is sliding underneath (subducting) another.
Tectonic plates are those slabs of mantle and crust that, in their
epochs-long drift, rearrange the earth’s continents and oceans. Most of the
time, their movement is slow, harmless, and all but undetectable.
Occasionally, at the borders where they meet, it is not.
Take your hands and hold them palms down, middle fingertips touching. Your
right hand represents the North American tectonic plate, which bears on its
back, among other things, our entire continent, from One World Trade Center
to the Space Needle, in Seattle. Your left hand represents an oceanic plate
called Juan de Fuca, ninety thousand square miles in size. The place where
they meet is the Cascadia subduction zone. Now slide your left hand under
your right one. That is what the Juan de Fuca plate is doing: slipping
steadily beneath North America. When you try it, your right hand will slide
up your left arm, as if you were pushing up your sleeve. That is what North
America is not doing. It is stuck, wedged tight against the surface of the
other plate.
Without moving your hands, curl your right knuckles up, so that they point
toward the ceiling. Under pressure from Juan de Fuca, the stuck edge of
North America is bulging upward and compressing eastward, at the rate of,
respectively, three to four millimetres and thirty to forty millimetres a
year. It can do so for quite some time, because, as continent stuff goes, it
is young, made of rock that is still relatively elastic. (Rocks, like us,
get stiffer as they age.) But it cannot do so indefinitely. There is a
backstop—the craton, that ancient unbudgeable mass at the center of the
continent—and, sooner or later, North America will rebound like a spring.
If, on that occasion, only the southern part of the Cascadia subduction zone
gives way—your first two fingers, say—the magnitude of the resulting quake
will be somewhere between 8.0 and 8.6. That’s the big one. If the entire
zone gives way at once, an event that seismologists call a full-margin
rupture, the magnitude will be somewhere between 8.7 and 9.2. That’s the
very big one.
Flick your right fingers outward, forcefully, so that your hand flattens
back down again. When the next very big earthquake hits, the northwest edge
of the continent, from California to Canada and the continental shelf to the
Cascades, will drop by as much as six feet and rebound thirty to a hundred
feet to the west—losing, within minutes, all the elevation and compression
it has gained over centuries. Some of that shift will take place beneath the
ocean, displacing a colossal quantity of seawater. (Watch what your
fingertips do when you flatten your hand.) The water will surge upward into
a huge hill, then promptly collapse. One side will rush west, toward Japan.
The other side will rush east, in a seven-hundred-mile liquid wall that will
reach the Northwest coast, on average, fifteen minutes after the earthquake
begins. By the time the shaking has ceased and the tsunami has receded, the
region will be unrecognizable. Kenneth Murphy, who directs FEMA’s Region X,
the division responsible for Oregon, Washington, Idaho, and Alaska, says,
“Our operating assumption is that everything west of Interstate 5 will be
toast.”
In the Pacific Northwest, everything west of Interstate 5 covers some
hundred and forty thousand square miles, including Seattle, Tacoma,
Portland, Eugene, Salem (the capital city of Oregon), Olympia (the capital
of Washington), and some seven million people. When the next full-margin
rupture happens, that region will suffer the worst natural disaster in the
history of North America. Roughly three thousand people died in San
Francisco’s 1906 earthquake. Almost two thousand died in Hurricane Katrina.
Almost three hundred died in Hurricane Sandy. FEMA projects that nearly
thirteen thousand people will die in the Cascadia earthquake and tsunami.
Another twenty-seven thousand will be injured, and the agency expects that
it will need to provide shelter for a million displaced people, and food and
water for another two and a half million. “This is one time that I’m hoping
all the science is wrong, and it won’t happen for another thousand years,”
Murphy says.
In fact, the science is robust, and one of the chief scientists behind it is
Chris Goldfinger. Thanks to work done by him and his colleagues, we now know
that the odds of the big Cascadia earthquake happening in the next fifty
years are roughly one in three. The odds of the very big one are roughly one
in ten. Even those numbers do not fully reflect the danger—or, more to the
point, how unprepared the Pacific Northwest is to face it. The truly
worrisome figures in this story are these: Thirty years ago, no one knew
that the Cascadia subduction zone had ever produced a major earthquake.
Forty-five years ago, no one even knew it existed.
In May of 1804, Meriwether Lewis and William Clark, together with their
Corps of Discovery, set off from St. Louis on America’s first official
cross-country expedition. Eighteen months later, they reached the Pacific
Ocean and made camp near the present-day town of Astoria, Oregon. The United
States was, at the time, twenty-nine years old. Canada was not yet a
country. The continent’s far expanses were so unknown to its white explorers
that Thomas Jefferson, who commissioned the journey, thought that the men
would come across woolly mammoths. Native Americans had lived in the
Northwest for millennia, but they had no written language, and the many
things to which the arriving Europeans subjected them did not include
seismological inquiries. The newcomers took the land they encountered at
face value, and at face value it was a find: vast, cheap, temperate,
fertile, and, to all appearances, remarkably benign.
A century and a half elapsed before anyone had any inkling that the Pacific
Northwest was not a quiet place but a place in a long period of quiet. It
took another fifty years to uncover and interpret the region’s seismic
history. Geology, as even geologists will tell you, is not normally the
sexiest of disciplines; it hunkers down with earthly stuff while the glory
accrues to the human and the cosmic—to genetics, neuroscience, physics. But,
sooner or later, every field has its field day, and the discovery of the
Cascadia subduction zone stands as one of the greatest scientific detective
stories of our time.
The first clue came from geography. Almost all of the world’s most powerful
earthquakes occur in the Ring of Fire, the volcanically and seismically
volatile swath of the Pacific that runs from New Zealand up through
Indonesia and Japan, across the ocean to Alaska, and down the west coast of
the Americas to Chile. Japan, 2011, magnitude 9.0; Indonesia, 2004,
magnitude 9.1; Alaska, 1964, magnitude 9.2; Chile, 1960, magnitude 9.5—not
until the late nineteen-sixties, with the rise of the theory of plate
tectonics, could geologists explain this pattern. The Ring of Fire, it turns
out, is really a ring of subduction zones. Nearly all the earthquakes in the
region are caused by continental plates getting stuck on oceanic plates—as
North America is stuck on Juan de Fuca—and then getting abruptly unstuck.
And nearly all the volcanoes are caused by the oceanic plates sliding deep
beneath the continental ones, eventually reaching temperatures and pressures
so extreme that they melt the rock above them.
The Pacific Northwest sits squarely within the Ring of Fire. Off its coast,
an oceanic plate is slipping beneath a continental one. Inland, the Cascade
volcanoes mark the line where, far below, the Juan de Fuca plate is heating
up and melting everything above it. In other words, the Cascadia subduction
zone has, as Goldfinger put it, “all the right anatomical parts.” Yet not
once in recorded history has it caused a major earthquake—or, for that
matter, any quake to speak of. By contrast, other subduction zones produce
major earthquakes occasionally and minor ones all the time: magnitude 5.0,
magnitude 4.0, magnitude why are the neighbors moving their sofa at
midnight. You can scarcely spend a week in Japan without feeling this sort
of earthquake. You can spend a lifetime in many parts of the
Northwest—several, in fact, if you had them to spend—and not feel so much as
a quiver. The question facing geologists in the nineteen-seventies was
whether the Cascadia subduction zone had ever broken its eerie silence.
In the late nineteen-eighties, Brian Atwater, a geologist with the United
States Geological Survey, and a graduate student named David Yamaguchi found
the answer, and another major clue in the Cascadia puzzle. Their discovery
is best illustrated in a place called the ghost forest, a grove of western
red cedars on the banks of the Copalis River, near the Washington coast.
When I paddled out to it last summer, with Atwater and Yamaguchi, it was
easy to see how it got its name. The cedars are spread out across a low salt
marsh on a wide northern bend in the river, long dead but still standing.
Leafless, branchless, barkless, they are reduced to their trunks and worn to
a smooth silver-gray, as if they had always carried their own tombstones
inside them.
What killed the trees in the ghost forest was saltwater. It had long been
assumed that they died slowly, as the sea level around them gradually rose
and submerged their roots. But, by 1987, Atwater, who had found in soil
layers evidence of sudden land subsidence along the Washington coast,
suspected that that was backward—that the trees had died quickly when the
ground beneath them plummeted. To find out, he teamed up with Yamaguchi, a
specialist in dendrochronology, the study of growth-ring patterns in trees.
Yamaguchi took samples of the cedars and found that they had died
simultaneously: in tree after tree, the final rings dated to the summer of
1699. Since trees do not grow in the winter, he and Atwater concluded that
sometime between August of 1699 and May of 1700 an earthquake had caused the
land to drop and killed the cedars. That time frame predated by more than a
hundred years the written history of the Pacific Northwest—and so, by
rights, the detective story should have ended there.
But it did not. If you travel five thousand miles due west from the ghost
forest, you reach the northeast coast of Japan. As the events of 2011 made
clear, that coast is vulnerable to tsunamis, and the Japanese have kept
track of them since at least 599 A.D. In that fourteen-hundred-year history,
one incident has long stood out for its strangeness. On the eighth day of
the twelfth month of the twelfth year of the Genroku era, a
six-hundred-mile-long wave struck the coast, levelling homes, breaching a
castle moat, and causing an accident at sea. The Japanese understood that
tsunamis were the result of earthquakes, yet no one felt the ground shake
before the Genroku event. The wave had no discernible origin. When
scientists began studying it, they called it an orphan tsunami.
Finally, in a 1996 article in Nature, a seismologist named Kenji Satake and
three colleagues, drawing on the work of Atwater and Yamaguchi, matched that
orphan to its parent—and thereby filled in the blanks in the Cascadia story
with uncanny specificity. At approximately nine o’ clock at night on January
26, 1700, a magnitude-9.0 earthquake struck the Pacific Northwest, causing
sudden land subsidence, drowning coastal forests, and, out in the ocean,
lifting up a wave half the length of a continent. It took roughly fifteen
minutes for the Eastern half of that wave to strike the Northwest coast. It
took ten hours for the other half to cross the ocean. It reached Japan on
January 27, 1700: by the local calendar, the eighth day of the twelfth month
of the twelfth year of Genroku.
Once scientists had reconstructed the 1700 earthquake, certain previously
overlooked accounts also came to seem like clues. In 1964, Chief Louis
Nookmis, of the Huu-ay-aht First Nation, in British Columbia, told a story,
passed down through seven generations, about the eradication of Vancouver
Island’s Pachena Bay people. “I think it was at nighttime that the land
shook,” Nookmis recalled. According to another tribal history, “They sank at
once, were all drowned; not one survived.” A hundred years earlier, Billy
Balch, a leader of the Makah tribe, recounted a similar story. Before his
own time, he said, all the water had receded from Washington State’s Neah
Bay, then suddenly poured back in, inundating the entire region. Those who
survived later found canoes hanging from the trees. In a 2005 study, Ruth
Ludwin, then a seismologist at the University of Washington, together with
nine colleagues, collected and analyzed Native American reports of
earthquakes and saltwater floods. Some of those reports contained enough
information to estimate a date range for the events they described. On
average, the midpoint of that range was 1701.
It does not speak well of European-Americans that such stories counted as
evidence for a proposition only after that proposition had been proved.
Still, the reconstruction of the Cascadia earthquake of 1700 is one of those
rare natural puzzles whose pieces fit together as tectonic plates do not:
perfectly. It is wonderful science. It was wonderful for science. And it was
terrible news for the millions of inhabitants of the Pacific Northwest. As
Goldfinger put it, “In the late eighties and early nineties, the paradigm
shifted to ‘uh-oh.’ ”
Goldfinger told me this in his lab at Oregon State, a low prefab building
that a passing English major might reasonably mistake for the maintenance
department. Inside the lab is a walk-in freezer. Inside the freezer are
floor-to-ceiling racks filled with cryptically labelled tubes, four inches
in diameter and five feet long. Each tube contains a core sample of the
seafloor. Each sample contains the history, written in seafloorese, of the
past ten thousand years. During subduction-zone earthquakes, torrents of
land rush off the continental slope, leaving a permanent deposit on the
bottom of the ocean. By counting the number and the size of deposits in each
sample, then comparing their extent and consistency along the length of the
Cascadia subduction zone, Goldfinger and his colleagues were able to
determine how much of the zone has ruptured, how often, and how drastically.
Thanks to that work, we now know that the Pacific Northwest has experienced
forty-one subduction-zone earthquakes in the past ten thousand years. If you
divide ten thousand by forty-one, you get two hundred and forty-three, which
is Cascadia’s recurrence interval: the average amount of time that elapses
between earthquakes. That timespan is dangerous both because it is too
long—long enough for us to unwittingly build an entire civilization on top
of our continent’s worst fault line—and because it is not long enough.
Counting from the earthquake of 1700, we are now three hundred and fifteen
years into a two-hundred-and-forty-three-year cycle.
It is possible to quibble with that number. Recurrence intervals are
averages, and averages are tricky: ten is the average of nine and eleven,
but also of eighteen and two. It is not possible, however, to dispute the
scale of the problem. The devastation in Japan in 2011 was the result of a
discrepancy between what the best science predicted and what the region was
prepared to withstand. The same will hold true in the Pacific Northwest—but
here the discrepancy is enormous. “The science part is fun,” Goldfinger
says. “And I love doing it. But the gap between what we know and what we
should do about it is getting bigger and bigger, and the action really needs
to turn to responding. Otherwise, we’re going to be hammered. I’ve been
through one of these massive earthquakes in the most seismically prepared
nation on earth. If that was Portland”—Goldfinger finished the sentence with
a shake of his head before he finished it with words. “Let’s just say I
would rather not be here.”
The first sign that the Cascadia earthquake has begun will be a
compressional wave, radiating outward from the fault line. Compressional
waves are fast-moving, high-frequency waves, audible to dogs and certain
other animals but experienced by humans only as a sudden jolt. They are not
very harmful, but they are potentially very useful, since they travel fast
enough to be detected by sensors thirty to ninety seconds ahead of other
seismic waves. That is enough time for earthquake early-warning systems,
such as those in use throughout Japan, to automatically perform a variety of
lifesaving functions: shutting down railways and power plants, opening
elevators and firehouse doors, alerting hospitals to halt surgeries, and
triggering alarms so that the general public can take cover. The Pacific
Northwest has no early-warning system. When the Cascadia earthquake begins,
there will be, instead, a cacophony of barking dogs and a long, suspended,
what-was-that moment before the surface waves arrive. Surface waves are
slower, lower-frequency waves that move the ground both up and down and side
to side: the shaking, starting in earnest.
Soon after that shaking begins, the electrical grid will fail, likely
everywhere west of the Cascades and possibly well beyond. If it happens at
night, the ensuing catastrophe will unfold in darkness. In theory, those who
are at home when it hits should be safest; it is easy and relatively
inexpensive to seismically safeguard a private dwelling. But, lulled into
nonchalance by their seemingly benign environment, most people in the
Pacific Northwest have not done so. That nonchalance will shatter instantly.
So will everything made of glass. Anything indoors and unsecured will lurch
across the floor or come crashing down: bookshelves, lamps, computers,
cannisters of flour in the pantry. Refrigerators will walk out of kitchens,
unplugging themselves and toppling over. Water heaters will fall and smash
interior gas lines. Houses that are not bolted to their foundations will
slide off—or, rather, they will stay put, obeying inertia, while the
foundations, together with the rest of the Northwest, jolt westward.
Unmoored on the undulating ground, the homes will begin to collapse.
Across the region, other, larger structures will also start to fail. Until
1974, the state of Oregon had no seismic code, and few places in the Pacific
Northwest had one appropriate to a magnitude-9.0 earthquake until 1994. The
vast majority of buildings in the region were constructed before then. Ian
Madin, who directs the Oregon Department of Geology and Mineral Industries
(DOGAMI), estimates that seventy-five per cent of all structures in the
state are not designed to withstand a major Cascadia quake. FEMA calculates
that, across the region, something on the order of a million buildings—more
than three thousand of them schools—will collapse or be compromised in the
earthquake. So will half of all highway bridges, fifteen of the seventeen
bridges spanning Portland’s two rivers, and two-thirds of railways and
airports; also, one-third of all fire stations, half of all police stations,
and two-thirds of all hospitals.
Certain disasters stem from many small problems conspiring to cause one very
large problem. For want of a nail, the war was lost; for fifteen
independently insignificant errors, the jetliner was lost. Subduction-zone
earthquakes operate on the opposite principle: one enormous problem causes
many other enormous problems. The shaking from the Cascadia quake will set
off landslides throughout the region—up to thirty thousand of them in
Seattle alone, the city’s emergency-management office estimates. It will
also induce a process called liquefaction, whereby seemingly solid ground
starts behaving like a liquid, to the detriment of anything on top of it.
Fifteen per cent of Seattle is built on liquefiable land, including
seventeen day-care centers and the homes of some thirty-four thousand five
hundred people. So is Oregon’s critical energy-infrastructure hub, a
six-mile stretch of Portland through which flows ninety per cent of the
state’s liquid fuel and which houses everything from electrical substations
to natural-gas terminals. Together, the sloshing, sliding, and shaking will
trigger fires, flooding, pipe failures, dam breaches, and hazardous-material
spills. Any one of these second-order disasters could swamp the original
earthquake in terms of cost, damage, or casualties—and one of them
definitely will. Four to six minutes after the dogs start barking, the
shaking will subside. For another few minutes, the region, upended, will
continue to fall apart on its own. Then the wave will arrive, and the real
destruction will begin.
Among natural disasters, tsunamis may be the closest to being completely
unsurvivable. The only likely way to outlive one is not to be there when it
happens: to steer clear of the vulnerable area in the first place, or get
yourself to high ground as fast as possible. For the seventy-one thousand
people who live in Cascadia’s inundation zone, that will mean evacuating in
the narrow window after one disaster ends and before another begins. They
will be notified to do so only by the earthquake itself—“a vibrate-alert
system,” Kevin Cupples, the city planner for the town of Seaside, Oregon,
jokes—and they are urged to leave on foot, since the earthquake will render
roads impassable. Depending on location, they will have between ten and
thirty minutes to get out. That time line does not allow for finding a
flashlight, tending to an earthquake injury, hesitating amid the ruins of a
home, searching for loved ones, or being a Good Samaritan. “When that
tsunami is coming, you run,” Jay Wilson, the chair of the Oregon Seismic
Safety Policy Advisory Commission (OSSPAC), says. “You protect yourself, you
don’t turn around, you don’t go back to save anybody. You run for your
life.”
The time to save people from a tsunami is before it happens, but the region
has not yet taken serious steps toward doing so. Hotels and businesses are
not required to post evacuation routes or to provide employees with
evacuation training. In Oregon, it has been illegal since 1995 to build
hospitals, schools, firehouses, and police stations in the inundation zone,
but those which are already in it can stay, and any other new construction
is permissible: energy facilities, hotels, retirement homes. In those cases,
builders are required only to consult with DOGAMI about evacuation plans.
“So you come in and sit down,” Ian Madin says. “And I say, ‘That’s a stupid
idea.’ And you say, ‘Thanks. Now we’ve consulted.’ ”
These lax safety policies guarantee that many people inside the inundation
zone will not get out. Twenty-two per cent of Oregon’s coastal population is
sixty-five or older. Twenty-nine per cent of the state’s population is
disabled, and that figure rises in many coastal counties. “We can’t save
them,” Kevin Cupples says. “I’m not going to sugarcoat it and say, ‘Oh,
yeah, we’ll go around and check on the elderly.’ No. We won’t.” Nor will
anyone save the tourists. Washington State Park properties within the
inundation zone see an average of seventeen thousand and twenty-nine guests
a day. Madin estimates that up to a hundred and fifty thousand people visit
Oregon’s beaches on summer weekends. “Most of them won’t have a clue as to
how to evacuate,” he says. “And the beaches are the hardest place to
evacuate from.”
Those who cannot get out of the inundation zone under their own power will
quickly be overtaken by a greater one. A grown man is knocked over by
ankle-deep water moving at 6.7 miles an hour. The tsunami will be moving
more than twice that fast when it arrives. Its height will vary with the
contours of the coast, from twenty feet to more than a hundred feet. It will
not look like a Hokusai-style wave, rising up from the surface of the sea
and breaking from above. It will look like the whole ocean, elevated,
overtaking land. Nor will it be made only of water—not once it reaches the
shore. It will be a five-story deluge of pickup trucks and doorframes and
cinder blocks and fishing boats and utility poles and everything else that
once constituted the coastal towns of the Pacific Northwest.
To see the full scale of the devastation when that tsunami recedes, you
would need to be in the international space station. The inundation zone
will be scoured of structures from California to Canada. The earthquake will
have wrought its worst havoc west of the Cascades but caused damage as far
away as Sacramento, California—as distant from the worst-hit areas as Fort
Wayne, Indiana, is from New York. FEMA expects to coördinate
search-and-rescue operations across a hundred thousand square miles and in
the waters off four hundred and fifty-three miles of coastline. As for
casualties: the figures I cited earlier—twenty-seven thousand injured,
almost thirteen thousand dead—are based on the agency’s official planning
scenario, which has the earthquake striking at 9:41 A.M. on February 6th.
If, instead, it strikes in the summer, when the beaches are full, those
numbers could be off by a horrifying margin.
Wineglasses, antique vases, Humpty Dumpty, hip bones, hearts: what breaks
quickly generally mends slowly, if at all. OSSPAC estimates that in the I-5
corridor it will take between one and three months after the earthquake to
restore electricity, a month to a year to restore drinking water and sewer
service, six months to a year to restore major highways, and eighteen months
to restore health-care facilities. On the coast, those numbers go up.
Whoever chooses or has no choice but to stay there will spend three to six
months without electricity, one to three years without drinking water and
sewage systems, and three or more years without hospitals. Those estimates
do not apply to the tsunami-inundation zone, which will remain all but
uninhabitable for years.
How much all this will cost is anyone’s guess; FEMA puts every number on its
relief-and-recovery plan except a price. But whatever the ultimate
figure—and even though U.S. taxpayers will cover seventy-five to a hundred
per cent of the damage, as happens in declared disasters—the economy of the
Pacific Northwest will collapse. Crippled by a lack of basic services,
businesses will fail or move away. Many residents will flee as well. OSSPAC
predicts a mass-displacement event and a long-term population downturn.
Chris Goldfinger didn’t want to be there when it happened. But, by many
metrics, it will be as bad or worse to be there afterward.
On the face of it, earthquakes seem to present us with problems of space:
the way we live along fault lines, in brick buildings, in homes made
valuable by their proximity to the sea. But, covertly, they also present us
with problems of time. The earth is 4.5 billion years old, but we are a
young species, relatively speaking, with an average individual allotment of
three score years and ten. The brevity of our lives breeds a kind of
temporal parochialism—an ignorance of or an indifference to those planetary
gears which turn more slowly than our own.
This problem is bidirectional. The Cascadia subduction zone remained hidden
from us for so long because we could not see deep enough into the past. It
poses a danger to us today because we have not thought deeply enough about
the future. That is no longer a problem of information; we now understand
very well what the Cascadia fault line will someday do. Nor is it a problem
of imagination. If you are so inclined, you can watch an earthquake destroy
much of the West Coast this summer in Brad Peyton’s “San Andreas,” while, in
neighboring theatres, the world threatens to succumb to Armageddon by other
means: viruses, robots, resource scarcity, zombies, aliens, plague. As those
movies attest, we excel at imagining future scenarios, including awful ones.
But such apocalyptic visions are a form of escapism, not a moral summons,
and still less a plan of action. Where we stumble is in conjuring up grim
futures in a way that helps to avert them.
That problem is not specific to earthquakes, of course. The Cascadia
situation, a calamity in its own right, is also a parable for this age of
ecological reckoning, and the questions it raises are ones that we all now
face. How should a society respond to a looming crisis of uncertain timing
but of catastrophic proportions? How can it begin to right itself when its
entire infrastructure and culture developed in a way that leaves it
profoundly vulnerable to natural disaster?
The last person I met with in the Pacific Northwest was Doug Dougherty, the
superintendent of schools for Seaside, which lies almost entirely within the
tsunami-inundation zone. Of the four schools that Dougherty oversees, with a
total student population of sixteen hundred, one is relatively safe. The
others sit five to fifteen feet above sea level. When the tsunami comes,
they will be as much as forty-five feet below it.
In 2009, Dougherty told me, he found some land for sale outside the
inundation zone, and proposed building a new K-12 campus there. Four years
later, to foot the hundred-and-twenty-eight-million-dollar bill, the
district put up a bond measure. The tax increase for residents amounted to
two dollars and sixteen cents per thousand dollars of property value. The
measure failed by sixty-two per cent. Dougherty tried seeking help from
Oregon’s congressional delegation but came up empty. The state makes money
available for seismic upgrades, but buildings within the inundation zone
cannot apply. At present, all Dougherty can do is make sure that his
students know how to evacuate.
Some of them, however, will not be able to do so. At an elementary school in
the community of Gearhart, the children will be trapped. “They can’t make it
out from that school,” Dougherty said. “They have no place to go.” On one
side lies the ocean; on the other, a wide, roadless bog. When the tsunami
comes, the only place to go in Gearhart is a small ridge just behind the
school. At its tallest, it is forty-five feet high—lower than the expected
wave in a full-margin earthquake. For now, the route to the ridge is marked
by signs that say “Temporary Tsunami Assembly Area.” I asked Dougherty about
the state’s long-range plan. “There is no long-range plan,” he said.
Dougherty’s office is deep inside the inundation zone, a few blocks from the
beach. All day long, just out of sight, the ocean rises up and collapses,
spilling foamy overlapping ovals onto the shore. Eighty miles farther out,
ten thousand feet below the surface of the sea, the hand of a geological
clock is somewhere in its slow sweep. All across the region, seismologists
are looking at their watches, wondering how long we have, and what we will
do, before geological time catches up to our own.
http://www.newyorker.com/magazine/2015/07/20/the-really-big-one